Orders of quaternion algebras with involution
نویسندگان
چکیده
منابع مشابه
Hyperbolicity of orders of quaternion algebras and group rings
For a given division algebra of the quaternions, we construct two types of units of its Z-orders: Pell units and Gauss units. Also, if K = Q √ −d, d ∈ Z \ {0, 1} is square free and R = IK , we classify R and G such that U1(RG) is hyperbolic. In particular, we prove that U1(RK8) is hyperbolic iff d > 0 and d ≡ 7 (mod 8). In this case, the hyperbolic boundary ∂(U1(RG)) ∼= S, the two dimensional s...
متن کاملNormed algebras with involution
We show that most of the theory of Hermitian Banach algebras can be proved for normed ∗-algebras without the assumption of completeness. The condition r(x) ≤ p(x) for all x (where p(x) = r(x∗x)1/2 is the Pták function), which is essential in the theory of Hermitian Banach algebras, is replaced for normed ∗-algebras by the condition r(x + y) ≤ p(x) + p(y) for all x, y. In case of Banach ∗-algebr...
متن کاملQuaternion Algebras
The additive identity is (0, 0), the multiplicative identity is (1, 0), and from addition and scalar multiplication of real vectors we have (a, b) = (a, 0) + (0, b) = a(1, 0) + b(0, 1), which looks like a+ bi if we define i to be (0, 1). Real numbers occur as the pairs (a, 0). Hamilton asked himself if it was possible to multiply triples (a, b, c) in a nice way that extends multiplication of co...
متن کاملLevels of Quaternion Algebras
The level of a ring R with 1 6= 0 is the smallest positive integer s such that −1 can be written as a sum of s squares in R, provided −1 is a sum of squares at all. D.W. Lewis showed that any value of type 2n or 2n + 1 can be realized as level of a quaternion algebra, and he asked whether there exist quaternion algebras whose levels are not of that form. Using function fields of quadratic forms...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 2018
ISSN: 0022-314X
DOI: 10.1016/j.jnt.2017.07.015