Orders of quaternion algebras with involution

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperbolicity of orders of quaternion algebras and group rings

For a given division algebra of the quaternions, we construct two types of units of its Z-orders: Pell units and Gauss units. Also, if K = Q √ −d, d ∈ Z \ {0, 1} is square free and R = IK , we classify R and G such that U1(RG) is hyperbolic. In particular, we prove that U1(RK8) is hyperbolic iff d > 0 and d ≡ 7 (mod 8). In this case, the hyperbolic boundary ∂(U1(RG)) ∼= S, the two dimensional s...

متن کامل

Normed algebras with involution

We show that most of the theory of Hermitian Banach algebras can be proved for normed ∗-algebras without the assumption of completeness. The condition r(x) ≤ p(x) for all x (where p(x) = r(x∗x)1/2 is the Pták function), which is essential in the theory of Hermitian Banach algebras, is replaced for normed ∗-algebras by the condition r(x + y) ≤ p(x) + p(y) for all x, y. In case of Banach ∗-algebr...

متن کامل

Quaternion Algebras

The additive identity is (0, 0), the multiplicative identity is (1, 0), and from addition and scalar multiplication of real vectors we have (a, b) = (a, 0) + (0, b) = a(1, 0) + b(0, 1), which looks like a+ bi if we define i to be (0, 1). Real numbers occur as the pairs (a, 0). Hamilton asked himself if it was possible to multiply triples (a, b, c) in a nice way that extends multiplication of co...

متن کامل

Levels of Quaternion Algebras

The level of a ring R with 1 6= 0 is the smallest positive integer s such that −1 can be written as a sum of s squares in R, provided −1 is a sum of squares at all. D.W. Lewis showed that any value of type 2n or 2n + 1 can be realized as level of a quaternion algebra, and he asked whether there exist quaternion algebras whose levels are not of that form. Using function fields of quadratic forms...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2018

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2017.07.015